Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Am J Infect Control ; 48(9): 1037-1041, 2020 09.
Article in English | MEDLINE | ID: covidwho-634244

ABSTRACT

INTRODUCTION: One of the serious consequences of the SARS-CoV-2 pandemic is the shortage of protective equipment for health personnel. N95 masks are considered one of the essential protective equipment in the management of patients with COVID-19. The shortage of N95 masks implies potential health risks for health personnel and significant economic losses for the health institution. The objective of this work was to investigate the disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria by using hydrogen peroxide plasma. MATERIAL AND METHODS: We examined the disinfection capacity of hydrogen peroxide plasma against the SARS-CoV-2 and 2 members of the ESKAPE bacteria (Acinetobacter baumannii and Staphylococcus aureus) through a study of artificial contamination in situ of N95 masks. Amplification of specific genes by real-time reverse transcription polymerase chain reaction of SARS-CoV-2 and microbiological culture of ESKAPE bacteria was performed before and after the disinfection process. RESULTS: SARS-CoV-2 was not detected in all assays using 5 different concentrations of the virus, and A baumannii and S aureus were not cultivable with inoculums of 102 to 106 CFU after disinfection tests of N95 masks with hydrogen peroxide plasma. CONCLUSION: Disinfection of N95 masks by using the hydrogen peroxide plasma technology can be an alternative for their reuse in a shortage situation. Implications for the use of disinfection technologies of N95 masks and the safety of health personnel are discussed.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Disinfection/methods , Equipment Reuse , Hydrogen Peroxide/administration & dosage , Masks/microbiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Acinetobacter baumannii/drug effects , COVID-19 , Humans , Respiratory Protective Devices/microbiology , SARS-CoV-2 , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL